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Abstract
Sequential machines do not provide enough computational perfomance for a real-time

robot control system. Hierarchical structuring will be considered not only as a software

development methodology, but also as a means for implementing a robot control system on a

pipelined parallel architecture to maximize performance. The concept of "virtual control

loops" will be introduced as a framework in which to discuss execution and communication of

parallel levels within a hierarchical control system. Timing requirements of a hierarchical

control system and control level will be modeled. Timing analysis will motivate the

discussion for control levels that exhibit a short-term executor monitoring cyclic response

behavior and a long-term planner anticipating the future. A control level software template

will be presented that combines concurrent executors and planners with interprocessor

communication.
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1.0 Introduction
The use of multiple processors i s beneficial for a number of reasons, including better

cost perfoxmance, modular growth, increased reliability through replication, and flexibility for

testing alternate control strategies via different partitioning [8, 161. However, reaping the
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benefits of parallel processing does not result from simply adding more processors to a

system. The effectiveness of a parallel implementation depends on the inherent parallelism

of the algorithms and the overhead of interprocessor communication. Algorithms that are

pureiy sequential will not run faster on a parallel machine. Further, the cost of

interprocessor communication i s a larger factor than it would be on a sequential machine

using procedure calls. Interprocessor communication using shared memory or message

passing takes longer because of the overhead of protocols and extra synchronization. To

achieve the benefits of parallelism, the cost of communications between processors must not

exceed the time savings obtained by parallel execution on the different processors.

Allocating multiple processors to algorithms i s usually defined in the context of a fine-

grain versus coarse-grain approach [12, 13, 141. An entire process which i s allocated one

processor for the l i fe of its execution could be considered coarse grain. Computational -

intensive problems (such as the dynamics of a robot arm, specifically a mamx multiply in

parallel) or data-intensive problems (vision processing) utilizing numerous processors in

parallel to compute solutions are both examples of a fine grained processing approach.

Parallel machines exhibit different system capabilities. General -purpose coarse-grain

machines are a type of parallel computer that maximize batch throughput. In this case, the

user may be unaware of any parallelism involved. Supercomputers are coarse-grained

machines that specialize in fine-grained number crunching in parallel for mathematically

intensive algorithms. In this case, the programmer may add some data flow enhancements to

assist the number crunching. Other fine-grain computers specialize in data-intensive

operations that do not handle general-computing efficiently. The variety in machines leads

to the distinction between systems that maximize the throughput of many jobs, known as

throughput -oriented multiprocessors, and systems that maximize the execution of one

process, known as speedup -orientedmultiprocessors [5].

This paper will focus on those parallel architectures that best fit the system

requirements of an intelligent robot controller in terms of price versus pdormance. A robot

controller i s a large system that i s composed of layers of fine-to-medium-grained processes.

A robot controller can be characterized as a speedup-oriented multiprocessing application
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since the controller i s partitioned into a set of concurrent, cooperating processes. A

multiprocessor system sharing a common or enhanced bus is an example of an architecture

that offers a mix of capabilities that can accommodate this architecture diversity. A goal of

an efficient multiprocessor system i s to exploit the benefits of parallelism while minimizing

the impact of parallelism on the software algorithms. Hierarchical structuring of such a

control system offers an easy and systematic parallel approach. With a hierarchical control

system, levels in the hierarchy can be developed as sequential processes and then parallel

integration can be modeled as communicating sequential processes [lo]. Thus, a control

system can be developed functionally independent of the implementation and then

hierarchically integrated with the communicating sequential processes model.

2.0 Hierarchical Real-Time Control
Hierarchical decomposition for a control system i s a well-defined structuring technique

that can be used for organizing the design so that channels of timing, communication and

authority are well-established [l,4, IS]. As implied by the name, a hierarchical system i s

comprised of many levels working together on a common goal [191. When applied to control

processes, the hierarchical structure i s not to be confused with a deeply nested serial

process that follows a single thread of control flow. Instead, when composed as a system,

hierarchical control i s built as layers of v i m 1 conrrol loops. When executing, each virtual

control layer in the hierarchy can be considered as part of a long chain defining the

hierarchical state, yet each level’s action i s based on i ts own control flow. Much as a

computer executes an instruction within a given duty cycle, the virtual control loops

correspond to layers of software modeled analogously to a physical machine. The virtual

control loop software exhibits cyclic feedback behavior that samples inputs including

command and status and guarantees some output within a given time.

Each virtual control layer communicates to other layers through well-defined command

and status interfaces. Levels within the hierarchy can be considered independent so that

modification to one layer to improve performance does not affect the operation of other layers

and can lead to standardized classifications. The independence of control flow between

layers allows virtual control loops to be easily ported onto a pipeline parallel computer

architecture. Parallelism i s not a direct result h m hierarchical decomposition into virtual

control loops levels in the control system, because a lower level cannot process without a
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command from its adjoining higher level. However, once a task i s underway a pipeline i s

created such that each level i s executing in parallel at a different stage of completion towards

the goal. For example, it would take 5 control cycles for an emergency abort from the top

level to fdter down to the bottom level in a five layer hierarchy. T h i s leads to the problem of

handling information in a pipeline. Each level communicates every cycle, so that i t would take

i cycles to move data up or down i levels in the hierarchy. Since each level i s at various

stages of completion of a task, coordinating timing information between levels must be

acknowledged.

From experience, an implementation of a hierarchical control system based on these

parallel pipelined concepts i s both robust and effective because of the structure imposed on

the software. The use of levels offers the benefit of information hiding, so that software

design and development can concentrate on local problems instead of attempting to solve

problems globally. Further, the addition of a system-wide synchronization pulse where the

levels execute in lock step adds the dimension of comprehensibility to the system. In

general, parallel systems are difficult to understand. With a system heartbeat, execution can

be characterized as a state machine where transitions are predictable and repeatable. T h i s

does not imply that all software i s rigidly defined with a state transition mechanism. Rather,

software abstraction i s adjustable with selective degrees of resolution ; much like changing

the magnification of a microscope. At the highest level of abstraction, the state transition are
+.; - is h e commands and status exchanged. T h i s allow easy pinpointing of problems

within the hierarchy. Tracking execution with a finer resolution of abstraction relies on the

basic state transitions employed by the computer. From a software development

standpoint, testing and analysis i s much easier with a system that allows a selectable

resolution of software abstraction.

Two design factors are at the heart of exploiting the benefits of a hierarchical control

system. The notions of task decomposition and response time are crucial in determining the

number of pmessors in a hierarchical system, the complexity of any level, and the

communication.
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2.1 Task Decomposition
Task decomposition can be defined as the process of recursively breaking down a task

into smaller more manageable tasks, until some atomic level of activity i s reached. At each

level in the hierarchical breakdown, an interface exists where the adjoining levels exchange

information. The higher level communicates a command to its neighboring lower level.

Likewise, the lower level command communicates a status to its neighboring upper level.

Th i s communication protocol i s analogous in sequential programming to a subroutine

invocation as a command and a return value as a status. Figure 1 illustrates the data flow

between levels.

I
STATUS

I1 PROCESSING
i+1

I J
4 I

COMMUNICATION

COMMUNICATION
I v

4 I
COMMUNICATION

I

COMMANDS

Figure 1. Information Flow in a Hierarchical Control System

Defining a hierarchal decomposition for a control system of a robot starts by taking a

high level task and through a series of task decompositions reduce th is task to a set of

motion primitives and at the same time status of the environment would filter up the

hierarchy. Although task decomposition breaks each task down into smaller and smaller

tasks, each lower level i s not completely dependent on its neighboring upper level. Although
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levels may share some data that models the world, each level can be considered to run

independently of each other, responding to a command, and supplying a status much l ike a

plant in a normal feedback control system. Thus, each level can be considered a virtual

control loop.

The mount of decomposition at any level should be based on reducing the problem to a

set of well-defined, manageable sub-tasks. If any of these sub-tasks should become too

complex, then another level should be added to the hierarchy and a new decomposition

attempted. By breaking down a series of tasks, duplicate subtasks should exist across task

definitions. The final collection of unique subtasks forms the basis of the lower level

commands. With a robust collection of lower level commands, future tasks can be

decomposed and defined as a series of these existing lower-level commands. Th is feature

bounds the software development so that enhancement on one level should not require

modifications to a lower level. Thus with a well-defined and complete set of commands, the

control system is extensible and adaptable to handle new functional needs without requiring

major reconstruction of the software. Figure 2 below illustrates how a robust set of subtask

definitions are created while defining a set of tasks, and how extensibility for future task

definitions rcsults as a by-product.

Set of Subtasks = ( ST,, STb, STc, STd, ST,, ST
f

)

Define New Task : T4 = ( ST,,, STd)

Legend
Ti= Task definition i

STx = SubTask Definition x

Note : STe i s unused but available for future use

Figure 2. Task Decomposition

Decomposing a single task consists of creating a l i s t of events that will occur in the
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process of completing the task. The occurrences of events depend on the system state and

result in actions in the system. Actions correspond to the process or system output that

provides the appropriate control to achieve the desired goal. A description of the state of the

machine can be done as a set of prerequisite conditions. An event occurs when a vector of

prerequisite conditions are m e . An event at one level i s treated as a new precondition

status at the higher level and results in a new commanded goal to the lower level. Figure 3

illustrates the composition of subtasks from a set of preconditions.

ST1= PC1 &PC:! & .... Pm -> A1

ST2= PC1 & PC3 & ...Po -> A2

e..

STn= PC1 & PC3 & ...Pp -> An

Legend
STi= subtaski

PCi = precondition i

Ai= actioni

Figure 3. Subtask Definition

With this model, goal-directed behavior can be programmed as a set of "if then"

triggered rules as in a production syscem [ITj. Given the appropriate state and input

command , the corresponding action i s determined by matching a series of preconditions in a

rule that has been programmed into the system. In effect, a state transition machine i s

created based on goals, preconditions, and actions. The machine moves from state to state

depending on i t s goal, the outside world and how i t was programmed.

2.2 Response Time
Control systems cover a broad spectrum of applications including flight control systems,

chemical plant control, nuclear power among others. Typically, these control systems are

distinguished by the importance of the reliability of the control systems operation. Any

failure by these control systems can be disastrous. However, mere functional correctness i s

not sufficient. System performance i s evaluated by the time delay required to respond (i.e.

calculate) a solution. A real-time system must satisfy real physical time constraints.
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Correspondingly, the basic system event i s the real -time clock.

Performing task decomposition i s a function of both the state of the world, and the

number of operations that must be performed. T h i s can get quite complex. Assuming infinite

resources, every possible condition could be considered when making a decision. Finite

computing resources limit the problem to a realistic domain. Determining the amount of

work a task must perform i s a subjective issue but depends heavily on the amount of time

required to make a decision. Responding to an event too late nullifies the control no matter

how intelligent the subsequent action. Th i s timing restriction leads to the definition of

response time as the maximum allowable time duration between an event and an action

resulting from the occurrence of that event.

The concept of response time or hard real-time must be contrasted to soft time that i s

used as a sequencer of events. For example, a sequence of robot commands GOTO A, GOTO

B, does not contain any timing information. Within the decomposition of th is command, only

the lower levels are worried about timing so that constant updates to the robot are

guaranteed. However, the command GOTO A BY ri GOTO B BY ri+l. where ti and $+1 are

some explicit time values, demands real time handling. T h i s timing imposes on the level that

the command sequence have a solution within an exact time quantum. Th is embodies the

distinction between time as a dynamic real-world psr;m>eter versus time as a sequencing

tool. While defining the timing requirements of levels within the hierarchy, th is distinction

must be considered at al l times.

2.3 Timing Analysis
Systems that meet response time obligations are known as real-time systems. For a

hierarchical control system to be real time, i t must meet the demands of 1) the response

time of the system plus 2) the response time of each level in the hierarchy. In the following

sections, i t will be assumed that each level in the hierarchy i s initially assigned one

processor. Then, depending on the characteristics of the level, more processors may be

assigned to a level.

2.3.1 System Response Time
System response time can be considered in two ways. One perspective i t to measure
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the elapsed time a system takes to respond immediately. Another way to view system

response time can be measured as the time required to provide a complete solution. In a

chess program, this distinction can be shown when considering the difference between an

immediate "thinking" response versus the time elapsed until an actual chess move. In th is

paper, system response will be defined as the amount of time until an immediate response.

T h i s definition leads to calculating the system response time as the sum of the worst case

time responses as information (commanddstatus) filters up or down the hierarchy and can

be characterized as follows. If n denotes the number of levels employed in the hierarchical

system and the maximum response time of a control cycle of any of the levels i s R,,, then

if the ith level spends tic seconds communicating/waiting for commands and status, and

'proc processing, th is leads to the following minimum timing constraint for each cycle:

%lax : for each i=l... n

%cause of the need for a system real -time response, an upper bound to the system
response time Rs can be calculated as follows:

To determine a specific system response time th i s implies that RJn defines Rm,

the maximum response time of any interval. No level can exceed th is time limit and still

guarantee proper system communication flow. T h i s implies a communications heartbeat in

each level must periodically sample the command and status so that updated information can

filter up/down the levels. T h i s periodic real-time sampling prevents any level from

processing in isolation and skewing the system response time.

At what rate the communication heartbeat i s sampling new commands and statuses, i s

dependent on the level within the hierarchy. If the lowest level update rate maintains R.,

equal to 1 millisecond, then requiring this as Rmax the response time limit for all other

levels to sample may require too much context -switching overhead. Instead, only levels that
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generate an update at the physical machine update rate are tied to th is timing constraint. All

higher levels that are not tied to the machine update rate may want to sample within some

other reasonable time period. T h i s leads to a definition of Rs, system response time, as the

sum of % response times tied to the physical machine update rate, and the sum of R.
J

response times arbitrarily set to meet the system response time goal.

for i=l...m and j=m+l,n

where for k=l, ...,n

From a practical standpoint, the response time of a system dictates the amount of

processing power a system needs. A system that requires a response in 10 minutes has

much different requirements than a system limited by 1 secondresponse times. For

example, ten minute response times provide sufficient leeway for choosing among

alternative trajectory paths, but may be insufficient for planning a complicated task requiring

coordination of several robots, tools and machines. Further, system response time may have

no impact at lower levels. Even with a 10 minute system response time, at the lowest levels

the response times may stil l require millisecond updates. System response times that are

on the order of a second may be doable, but may require tm much m;.xy and effort to be

worthwhile. In effect, system response time should be as small as possible v;lthout being

unrealistic.

2.1.1 Low Level Timing Requirements
The system response time leads to corresponding maximum level response time that

all levels must met. Meeting th is timing restriction may not offer some levels enough

processing time for sophisticated control. T h i s leads to the motivation to divide task

decomposition into planners and executors. Now, each level can maintain real-time control,

yet concurrently evaluate alternative future actions. The planner i s responsible for generating

a plan consisting of a series of actions. The "best" plan i s selected from a candidate l ist of

alternative plans that achieve the commanded goal, given the current state of the

environment. An executor enables state transitions and so i s responsible for stepping
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through a generated plan. The executor matches the current state of the machine against a

set of preconditions as in a production system, which triggers the corresponding action. An

initial assumption i s that flexec, the time the executor runs each cycle i s less than the level

response time limit maximum; otherwise the system response time must be increased or a

finer resolution of task decomposition must be attempted.

Response time for any level i, previously defined as %, depends on the timing

constraints of the level in the hierarchy. 5 i s composed of texec , the time each level

spends running the executor, tcom, the time spent communicating/waiting for data, and

Sesidud, the t ime remaining before the next cycle. T h i s leads to the following definition for

response time for theithlevel.

% "exec + f'comm + +residual

Some general observations are in order. Obviously, + f'comm must always

be less than since the least can be i s zero. T h i s implies that if the response

time of the level i s very small, say 1 millisecond, this leaves very li t t le time to do both

processing and communicating. Finally, the amount of residual t ime per level

dictates whether the executor, the planner and other processes can run concurrently as

interleaved processes on one processor or must run in parallel on different processors. Each

of these observations willbe explored further.

At the lower levels, operation i s relatively independent of whatever the higher level

task i s executing. Control i s characterized by the execution of the same or nearly the same

task every cycle. Performance must be fast and predictable. An example i s the servo loop at

the motor level. These operations must operate with short response times and guaranteed
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update rates. For example, in order for a robot to exhibit smooth motion, motion control

updates to the ann must be supplied within a set time linked to the physical hardware

capabilities. Control that does not meet this timing requirement results in a robot displaying

jerky, stop-start motion. Thus, if a control cycle i s sufficiently fast, the system will provide

motion control that will appear continuous and thus in real-time. T h i s i s realized as an

efficient input-compute-output cycle that maintains a small standard deviation each cycle

with an upper bound CT on variance. T h i s implies that not only must residual time tiresidud

be greater that zero, but must be bounded by a sum of the worst case times for both

processing and communication. T h i s leads to the following constraint.

o c

. .
where exec = j=1,... - cycles

j=1,... - c;ycles

time available to other backgroundiTh is relation sets a limit on the t

processes each cycle. Th is further implies that adding further capabilities with a small

'residual residual time will require additional processors, which will adversely affect

tlcomm, the time for communications.

In practice, response times at the lowest levels are very small. This leaves li t t le time

for communication and planning. Using a percentage of 10% communication time, a 1 msec

response time level should allow for no more than 100 usec for all communications. A typical

memory data move instruction using microprocessors i s of the order of 1 usec. Th i s allows a

total of 100 data moves, with no time left for disk access, context switches, or other

functions typical of a sophisticated operating system. T h i s implies that the physical

implementation of the channels of communication i s of utmost importance. High-bandwidth

channels are required, such as a common bus structure or dedicated l i n k s between

processing nodes, with very l i t t le interface to the user. Thus, low level control will not
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exhibit elaborate and/or sophisticated processing unless a parallel software algorithm i s

mated to special-purpose fine -grain4 hardware to allow more processing power per cycle.

There are numemus examples that illustrate the fine-grained solutions at this level in the

hierarchy [7, 11, 16, 18,201.

2.1.1 Higher Level Timing Requirements
Moving higher in the hierarchy, alternative courses of action and real-world interaction

combine to increase the complexity, although F$, level response time, also increases.

Higher levels are allowed more time to "think" about solutions. The increase in 5 means

that the communications and executor heartbeat i s a smaller percentage of the levels

processing activity. More time per level allows a higher level to exercise more options such

as secondary data storage, multi-tasking, and character input/output for a user interface. In

fact, loosely coupled machines could conceivably be tied together in a distributed control

system at the very highest levels for systems with a moderating response time.

In the middle of the hierarchy the concern for processor power remains. Allowing a

planner and executor to run on the same processor i s desirable for its simplicity and the

ease on communication requirements. Whether a control level can support the executor and

planning processes running interleaved on one processor or must use different processors in

parallel depends on the constraints of timing and available computing resources.

In order to analyze the relationship between the planner and executor in an interleaved

processing environment, several assumptions need to be established. First, levels execute

every cycle and these cycles are of fixed time length c. Th is leads to the following equality of

time cycles throughout the system.

i=O, ... - cycles

Second, once the executor has completed one cycle, i t must wait for the next clock

cycle before processing again. I t i s preferred for the executor to block and wait until the next

time cycle before processing at higher levels. (For lower levels, the executor could

busy/wait andpoll on a system clock awaiting the next clock cycle in cases where the time
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for a context switch between tasks may be too large a percentage of cycle operation.)

Third, the concept of blocked, running, waiting processes implies the use of

multitasking. In order to achieve real-time performance, the multi-tasking scheduling need

not be fair, as in a general-purpose operating system. Instead, the multitasking must allow

assignment of priorities to tasks. The requirement for priorities leads to the assumption that

the executor i s of higher priority than the planner. The higher priority of the executor insures

that the system response requirement i s preserved.

Founh, communication between the planner and the executor uses some means that

involves non-interruptible critical sections. Th is i s important since some multi-tasking

systems lack a non-preemptive feature.

Given these assumptions for interleaved execution, funher timing constraints are

imposed including context switching overhead, critical section support, and general planner

throughput requirements. I t i s st i l l to be determined whether interleaved execution i s

advisable. First, the planning phase of each cycle that i s provided only a small tiresidual,

residual time processing would precIude a planner from formulating a plan in a reasonable

amount of time. The requirement that the planner must finish any plan within d cycles should

!x imposed on a level. Th i s leads to the following general constraint that a plan would take

di cycles to finish for the ith level, each cycle using hsidual minus two times the tcs a

context switching amount of processing time.

+Plan ’
If this condition cannot be held, then a multiprocessor planner/executor level should

be used. Assuming the condition to finish a plan within di cycles does hold, more detailed

constraints need to be resolved. Response time needs to be recvaluated. Therefore,

including the planner on the same processor adds two extra context switches to a cycle,

represented in time tCS, plus increases the amount of communication time to now include
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both interlevel communication 'il-comm and communication between the planner and

T h i s has the corresponding effect on response time.iexecutor t e.p-comm.

% = 'exec + t'comm + 'plan + 'residual + 2 'CS

- + 'e.p-comm
where - 'il.comm

Since the planner and executor modules share data, whenever the planner must update

the plan graph, i t enters a critical section whereby i t cannot be preempted. T h i s update may

or may not occur every cycle but it must be accounted for in the worst case scenario. A

problem may arise if the planner i s required to update a large amount of data because the

amount of time allotted for the critical section must only be a fractional amount of the time

used by the executor each cycle. Th is leads to the constraint that the planner to executor

communication i s small.

CC I$2 e.p -corn

Ifthe planners cannot meet this constraint, a parallel planner and executor should be

used and interprocessor communication between the processes should use a scheme that

incorporates time slices or double buffers the update of the plan. If th is constraint i s met, one

cautionary note i s advised. Should a critical section in one cycle overlap into the next cycle ,

the executor would wait until the planner was done updating a portion of the plan graph

before continuing processing. Thus, the availability of non-preemptable multitasking i s

required so that the scheduler does not preempt the lower priority planner in i t s critical

section. Summarizing, the following features must be available for an interleaved

planner/execu tor.

l high priority processes (i.e. executors) run every cycle at a fured interval

responding to current control requirements, and
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l lower priority processes (i.e. planners) run in the background anticipating

future control requirements.

l low priority processes allow critical sections to run to completion (i.e. non-

preemptive) but must be only a fractional time portion of higher -priority

processes operating cycle

2.4 System Architecture
The model for hierarchical control that has been developed exhibits concmnt system

operation that can be implemented as a blend of multiple processors and interleaved

execution on a single processor. Because of the disparity of response times required at

various levels in the hierarchy, different levels of granularity are required. At the lowest

levels, planning may be impossible, and even execution may require multiple processors to

achieve a solution. Moving higher in the hierarchy, timing constraints prevent the planner

and executor from residing on the same processor. In this case, the two pmessors would

run in parallel and asynchronously the planner would update plans. At higher levels,

completion time for plans i s less critical; so that multitasking on a single processor can

supply enough processing power for both the planner and executor. Further, if the timing

constraints are not stringent, multiple levels can be combined onto one processor, or the use

of a local area network' can be used to connect other computers as a part of the contro~~er.

5 , : of : tz thess configurations i s based on the response time requirement of the level.

Figure 4 provides guideline for the type of performance required of levels in the hierarchy.

assuming a deterministic LAN that can guarantee system response
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L A N

LEVEL minutes

CYCLE/ 2 seconds
RESPONSE

TIMES

MultitaskingLOW SPEED

Asynchronous
MEDIUM SPEED Multiprocessing

250 msec I

elmsec - and/or dedicated hardware
HIGH SPEED

Figure 4. Computing Resource Utilization Based on Cycle Response Time

Fine Grained Multiprocessing

3.0 Control Level Template
A model for task decomposition within a hierarchical control system has been

established that assumes multiple processors operating in parallel efficiently communicating

commands and status up and down the hierarchy. Each level must have at least one executor

and planner running concurrently in order to account for both the future and the present.

These two concurrent processes communicate in some fashion, either via shared memory or

by passing messages. The executor wi l l mad a plan each cycle. T h i s plan may or may not be

updated each cycle. The executor runs at fixed time intervals so that some clock

synchronization xhi -res musr be available. The assumption i s made that the executor

does not exceed i t s fixed time interval in a cycle and that i t waits until the next t ime interval

before processing again. The planner on the other hand i s running continuously.

These capabilities form the basic template for a control level. What communication and

synchronizing primitives the system use i s not as important as the high-level coordination

scheme. The following high level algorithm gives an overview of communication between

levels within the control hierarchy. The algorithm i s written in pseudo code using Brinch

Hansen primitives cobegin and coend for concurrent execution [9]. I t i s impomt to note

that the concurrent sections of code could be parallel on separate processors or interleaved

on a single processor as dictated by the timing constraints. In this algorithm, the familiar file

operations open, read, close will be used to implementcritical sections whereby no other

process i s modifying the data. The open corresponds to a lock, and a close corresponds to an
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unlock primitives. Comments in the following algorithm will be delimited by double quotes.

procedure level()

cobegin
repeat "executor section, runs at a higher priority"

wait-until( next-cycle);
update(next -cycle);
open, read command, close;
open, readIstatus, close;
readplan;
process;
open, wn:t* -command, close;
open, wrire-status, close;

untilforever;

repeat "planner"
plan;
open; writeglan; close;

untilforever;

'' timing synchronization primitive
"update next cycle count"
'I readcommand "

readstatus "
"read current plan"

execute level
"write command 'I

'I write status 'I

"do level planning"
"update executor plan"

c o e d

T h i s template for a control level i s implementation independent. However, two

fundamental capabilities must exist for a well-designed system.

1) The ability to comlrrunica iire ' x share data between the levels i s mandatory. The

open, r e d w r i t e , close operations must be from either agreed upon shared memory

location or an agreed upon mailbox for message passing. Because the higher level

update rates may not be tied to the machine update rate, the lower levels may be

running considerably faster than the higher level executor cycles. A time stamp i s

required to correlate and synchronize messages. Further, in a message passing

scheme this would require either that a new message arrive each cycle, or the

message passing routines have the capability to check for a new message, and if

none, assume to use the old message for the next cycle (or when feasible to

interpolate until the next message).

2) Some form of a common memory manager that maps logical names into physical
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addresses for interprocessor communication must be available. With this

capability, locations of command and status buffers or message exchanges are

symbolic. Levels can be added one by one to the system without use of a linkage

editor to resolve inter-processor naming of either command and status buffers.

T h i s level of abstraction between the machine and the software improves flexibility

and allows code to be processor independent.

Whether to perfom this logical mapping statically (at compile time) or dynamically

(at run time) depends on the system performance requirements. Whenever the

mapping i s performed the software would be best served by a consistent approach

a m s s levels. Static translations from logical to physical address typically done at

linking and loading would be best for systems with very tight timing requirements.

However, th is precludes the opportunity for any load balancing or movement of

processes within the system, since the system would have hardwired the logical

connections. Dynamic mating of a logical to physical address i s more robust but

requires extra overhead that may not be available.

3.2 Algorithm Timing Analysis
The timing constraints of the control level algorithm outlined in the previous section

can be studied using a Gantt chart notation. For the sake of accounting, the algorithm will be

divided into functions. These funcGms u;;! k assi+geda.rbitraryb r n g constraints for the

purposes of analysis. R will represent the function for an interprocessor read of a command

and status and will take 1 ms (millisecond). W will represent the function for an

inteprocessor write of a command and status, and will take 1 ms. X will represent the current

level executor processing and will range from 1 to 3 ms computation intervals. P will

represent the planner function and will require 1 to 6 ms before updating a plan. Plans must

be updated within 16 ms or at worst an updated plan should be available every third cycle. U

will represent the critical section where the planner updates the current plan graph. For

simplicity, operating system computation costs such as context switches will be ignored.

Initially, a response time of 8 ms will be considered. For this case, all the functions can run

interleaved on one processor in one cycle, with sufficient residual processing time as shown

by the Gantt chart in figure 5.
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0 8 16

P

Figure 5. Gantt Chart Illustrating a Control Level Computational Pattern from

R X X X W P

Executing Interleaved on One Processor

Notice that the algorithm repeats ad infinitum the basic "RXWPU" computational

pattern. The planner runs at least 3 ms each cycle which implies that after two cycles 6 ms

will have been alloted to the planner with 1 ms for plan updating. More stringent timing

constraints may degrade system performance beyond an acceptable level. For example, a 6

ms response time allows insufficient time for planning, so that within 3 cycles no updated

plan exists. Figure 6 shows the Gantt chart for th is situation.

0 6 12

Figure 6. Gantt Chart Illustrating a Control Level Failing to Meet Timing

Constraints

The lack of computational resources for planning suggests the partitioning of the

problem across processors. Now, processor one (PI) will have exclusive execution, but will

have the additional timing constraint of interprocessor communication with the planner. T h i s

interprocessor communication overhead i s represented by the function C and requires 1 ms.

With excess computational power, the procesor must now idle between cycles represented

by a dash (i.e. -). The executor repeats ad infinitum a "CRXW-" computational pattern.

Processor two (P2) will execute planning exclusively. Computational resources easily

guarantee 6 ms planning to generate updated plans with 12 ms. As a side effect of excess

computational power, the planner may have to wait for fresh information from R, an executor

status read. (The shared R status information i s assumed to be in a critical section and read-
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only for the planner.) The Gantt chart in figure 7 shows the execution scheme in a parallel

processors.

-P1 C R X X W x x x w -

P2 P P P U - - - P P P P -

0 6 12

Figure 7. Gantt Chart Illustrating a Control Level Computational Pattern from

Parallel Execution on Two Processors

In the parallel design, the control level effectively meets all timing constraints with

some computational waste. However, this solution can be sensitive to increases in

complexity of the executor (X) portion of the control cycle. For example, if the function X i s

replaced by a newer version which requires 4 ms a cycle, then the above functional

allocation across processors will not work. For in the worst case, there i s no time for

interprocessor communication with the planner (0. In this case, faster hardware must be

bought or a more refined task decomposition strategy must be used.

4. Conclusion
This paper has addressed some design and timing issues associated with developing a

hierarchical control system for an intelligent machine. Hierarchical structuring for a control

system creates levels of parallel operation that can be characterized as virtual control loops.

Virtual control loops are a software model of a machine duty cycle where software emulation

samples input command from a neighboring upper level, compares this to the sensory

sampled environment, computes a goal directed output, and output an action to the

neighboring lower level, allwithin a fixedresponse time.

Mapping this hierarchical control system onto a parallel pipelined computing system i s

a efficient and practical method of implementation. It offers the flexibility for inter-level

communication at a reasonable cost. Levels in the hierarchy are primed with commands and

then local control flow within each level proceeds independently of neighboring levels. The
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global control flow i s s t i l l goal directed because each level i s periodically sampling new

commands and reporting status to neighboring levels. A system response time i s guaranteed

because of this periodic sampling of commands and status.

Task decomposition i s used to create the level of granularity for interlevel module

definition necessary to meet the strict real-world timing requirement at the lowest level

while offering a convenient software structuring tool at the higher levels of control.

Information hiding between higher levels results and allows well-defined, standardized

interfaces to be developed. Task decomposition control allows systematic software

structuring that offers predictable timing behavior that can be modeled as the sum of the

processing plus inter-processor communication costs. Within each control level, a planner

and executor run concurrently; the planner accounting for future action, and the executor

handling real-time responses. The planner and executor can run concurrently on the same

processor given sufficient residual t ime per control cycle for planning in a pre-determined

number of cycles. Adding more processors to a level will allow a level to meet the timing

constraints but will adversely affect the communication time per level, as well as increase

the complexity.

T h i s hierarchical pipelined parallel control system exhibiting virtual control loops has

been implemented with a purely executor style of task decomposition for a robot control

system at the National Bureau of Standards [3]. The flow of control was basea on state -

table transitions. Where planning was appropriate, static plan defintions were used. The

system offered several benefits. First, the system was sensory -interactive and adapted to

perturbations in the environment in real-time even though the world model was limited to

basic feature recognition. Second, hierarchical decomposition mated well-defined interfaces

that allowed substitution of different implementations of a level with li t t le effect on the higher

or lower levels that lead to proposed interface standards [6]. Finally, the system was able

to execute in real-time and supply millisecond robot updates while acounting for

perturbations in the environment.

Work has begun on implementing a full hierarchical parallel pipelined control system

that includes planning, extensive world modeling including maps, object definitions and
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feature recognition [2]. The hierarchical control systems under development will be adapted

for both robot and autonomous vehicles. To maintain cost, flexibility and portability,

multiprocessors communicating across a shared backplane has been chosen for the parallel

architecture [21]. Eventually the cost of fine-grain machines may allow a process per

processor for the design of a robot control system; in the meantime a hybrid system that

supports fine and medium grain processes offers a cost-effective and efficient design

methodology.
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